197 research outputs found

    Machine learning approaches to model cardiac shape in large-scale imaging studies

    Get PDF
    Recent improvements in non-invasive imaging, together with the introduction of fully-automated segmentation algorithms and big data analytics, has paved the way for large-scale population-based imaging studies. These studies promise to increase our understanding of a large number of medical conditions, including cardiovascular diseases. However, analysis of cardiac shape in such studies is often limited to simple morphometric indices, ignoring large part of the information available in medical images. Discovery of new biomarkers by machine learning has recently gained traction, but often lacks interpretability. The research presented in this thesis aimed at developing novel explainable machine learning and computational methods capable of better summarizing shape variability, to better inform association and predictive clinical models in large-scale imaging studies. A powerful and flexible framework to model the relationship between three-dimensional (3D) cardiac atlases, encoding multiple phenotypic traits, and genetic variables is first presented. The proposed approach enables the detection of regional phenotype-genotype associations that would be otherwise neglected by conventional association analysis. Three learning-based systems based on deep generative models are then proposed. In the first model, I propose a classifier of cardiac shapes which exploits task-specific generative shape features, and it is designed to enable the visualisation of the anatomical effect these features encode in 3D, making the classification task transparent. The second approach models a database of anatomical shapes via a hierarchy of conditional latent variables and it is capable of detecting, quantifying and visualising onto a template shape the most discriminative anatomical features that characterize distinct clinical conditions. Finally, a preliminary analysis of a deep learning system capable of reconstructing 3D high-resolution cardiac segmentations from a sparse set of 2D views segmentations is reported. This thesis demonstrates that machine learning approaches can facilitate high-throughput analysis of normal and pathological anatomy and of its determinants without losing clinical interpretability.Open Acces

    Hermeneutic single case efficacy design: A systematic review of published research and current standards

    Get PDF
    open4siThis article systematically reviews the methodological characteristics of Hermeneutic Single Case Efficacy Design (HSCED) studies published in peer-reviewed journals. HSCED provides researchers with a flexible and viable alternative to both between-groups and within-subject experimental designs. This article includes a description of the evolution of the methodology distinctive to HSCED; a discussion of results of HSCED studies considered within a framework of contemporary standards and guidelines for systematic case study research; a presentation of recommendations for key characteristics (e.g., diagnosis, hermeneutic analysis, adjudication procedure). Overall, the aim is provide researchers and reviewers with a resource for conducting and evaluating HSCED research. The results of a systematic review of 13 studies suggests that published HSCED research meets contemporary criteria for systematic case study research. Hermeneutic analysis and adjudication emerged as areas of HSCED practice characterized by a diversity of procedures. Although consensus exists along key dimensions of HSCED, there remains a need for further evaluation of adjudication procedures and reporting standards.openBenelli, Enrico; De Carlo, Alessandro; Biffi, Diana; Mcleod, JohnBenelli, Enrico; De Carlo, Alessandro; Biffi, Diana; Mcleod, Joh

    Selective laser melting of high-strength primary AlSi9Cu3 alloy: Processability, microstructure, and mechanical properties

    Get PDF
    Abstract The present work explores the possibility of employing the selective laser melting technique to produce parts in AlSi9Cu3 alloy. This alloy, currently prepared by high-pressure dye casting and intended for automotive application, may benefit from the refined microstructure commonly induced by additive manufacturing techniques. The process parameters were systematically varied to achieve full density, and the resulting defects were studied. Thereafter, microstructural features were analyzed, revealing that the high cooling rate, induced by the process, caused a large supersaturation of the aluminum matrix and the refinement of the eutectic structure. Again, the precipitation of the reinforcing θ phase provided numerous nucleation sites. These features were found to be related to the mechanical behavior of the SLMed AlSi9Cu3 alloy, which outperformed the conventional casted alloy in terms of elongation to failure and strain hardening rate both in the as-built and heat treated conditions

    Heat treatment of aluminium alloys produced by laser powder bed fusion: A review

    Get PDF
    Abstract Laser powder bed fusion (LPBF) is the most widely used additive manufacturing technique and has received increasing attention owing to the high design freedom it offers. The production of aluminium alloys by LPBF has attracted considerable interest in several fields due to the low density of the produced alloys. The peculiar solidification conditions experienced by molten metal during the SLM process and its layer-by-layer nature causes a variety of microstructural peculiarities including the formation of metastable phases and supersaturated solid solutions, extreme microstructural refinement, and generation of residual stresses. Therefore, post-build heat treatments, which are commonly applied to conventionally produced aluminium alloys, may need to be modified in order to be adapted to the peculiar metallurgy of aluminium alloys manufactured using LPBF and address the specific issues resulting from the process itself. A number of studies have investigated this topic in recent years, proposing different approaches and dealing with various alloying systems. This paper reviews scientific research results in the field of heat treatment of selective laser melted aluminium alloys; it aims at providing a comprehensive understanding of the relationship between the induced microstructure and the resulting mechanical behaviour, as a function of the various treatment strategies

    Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents

    Get PDF
    The use of magnesium-alloy stents shows promise as a less intrusive solution for the treatment of cardiovascular pathologies as a result of the high biocompatibility of the material and its intrinsic dissolution in body fluids. However, in addition to requiring innovative solutions in material choice and design, these stents also require a greater understanding of the manufacturing process to achieve the desired quality with improved productivity. The present study demonstrates the manufacturing steps for the realisation of biodegradable stents in AZ31 magnesium alloy. These steps include laser microcutting with a Q-switched fibre laser for the generation of the stent mesh and subsequent chemical etching for the cleaning of kerf and surface finish. Specifically, for the laser microcutting step, inert and reactive gas cutting conditions were compared. The effect of chemical etching on the reduction in material thickness, as well as on spatter removal, was also evaluated. Prototype stents were produced, and the material composition and surface quality were characterised. The potentialities of combining nanosecond laser microcutting and chemical etching are shown and discussed

    Fiber laser welding of copper based open cell foams

    Get PDF
    "Porous metallic materials with cellular structures are well known to combine many physical and mechanical properties. This mix of different properties makes these systems very attractive for both structural and functional applications, depending on pore size, methodology of production and material characteristics. Because of their porous structure, unconventional machining and more in general unconventional processing is becoming more and more important nowadays for promoting the industrial applications of such a kind of materials. In this work a study on the fiber laser welding process, performed using a 1 kW continuous wave fiber laser, on Cu based foams is reported. The foams, whose the mean size of the pore is approximately 3.5 mm, were produced by means of infiltration of leachable space holders inside the metal in liquid state. After preliminary welding test in a bead on plate configuration performed only on the surface of the foams, samples in lap joint configuration were realized for evaluating the cross section of the welded bead. The effect of the process speed on the geometrical characteristic features of the joints was studied. The extent of the heat affected zone was evaluated directly by optical microscopy and indirectly by executing micro-hardness test. Then the heat affected zone extension was corrected to the process speed. Besides, electron scanning microscopy, coupled with electron dispersive spectroscopy, was adopted for the compositional analysis of the welded beads. It was shown that the laser joints could be achieved in lap joint configuration, allowing high reflectivity porous alloys with complex structures and average pore size of the order of millimeters to be connected.

    Effect of laser welding on the mechanical and degradation behaviour of Fe-20Mn-0.6C bioabsorbable alloy

    Get PDF
    Abstract The present work aims at exploring the influence of laser welding on the functional behaviour of a Fe-20Mn-0.6C (wt.%) bioabsorbable alloy. At first, the selection of the most suitable process speed (40 mm/s) was done in order to obtain a full penetration joint with limited taper. Then, microstructural and mechanical analyses of welded sheets confirmed suitable performance of the joint, without porosity, thus preserving chemical composition, mechanical resistance and ductility even after welding. In particular, the base material comprised both γ austenite and e martensite, while the welded samples showed a further type of martensite, namely α'. Moreover, ultimate tensile strength (1095 MPa and 1104 MPa in base and welded material, respectively) and elongation to failure (61.3% and 60.9%, respectively) were almost not influenced by the welding process. Considering the absorbable nature of these alloys, static immersion degradation tests were carried out, and confirmed that the surface of the welded bead did not exhibit a significant variation of the material degradation rate after 14 days in modified Hanks' solution. Finally, a significant accumulation of degradation products, mainly (Fe,Mn)CO3, was observed along the joining line

    Generalising Deep Learning MRI Reconstruction across Different Domains

    Full text link
    We look into robustness of deep learning based MRI reconstruction when tested on unseen contrasts and organs. We then propose to generalise the network by training with large publicly-available natural image datasets with synthesised phase information to achieve high cross-domain reconstruction performance which is competitive with domain-specific training. To explain its generalisation mechanism, we have also analysed patch sets for different training datasets.Comment: Accepted for ISBI2019 as a 1-page abstrac

    Computational Model for Delamination Growth at SMA-GFRP Interface of Hybrid Composite

    Get PDF
    AbstractA cohesive model of the new interface of the CuZnAl SMA/GFRP hybrid composite is proposed and the interfacial delamination under Mode II loading conditions, between plain CuZnAl SMA sheet insert and GFRP matrix, as well as between CuZnAl SMA sheet insert having elliptical hole pattern and GFRP matrix, are studied in detail.The results of the pull-out tests with plain sheet insert are used to calculate the interfacial parameters of the hybrid composite. With these parameters, the cohesive interaction and failure mechanism for hybrid composite with plain sheet, as well as with patterned sheet insert, is modelled. The efficacy of the laser patterned SMA sheet inserts to improve the overall interfacial strength in the new laminated SMA/GFRP hybrid composite for applications, such as light weight and high damping material under dynamic loads, is validated

    Cohesive surface model for delamination and dynamic behavior of hybrid composite with SMA-GFRP interface

    Get PDF
    The interface model between CuZnAl SMA and GFRP, used in a hybrid composite, is proposed using cohesive surfaces. Using this model and derived parameters, mode-II delamination is studied between CuZnAl SMA insert and GFRP and also between laser patterned CuZnAl SMA insert and GFRP. Natural frequency and damping ratio of the hybrid composite specimen, in the shape of slender beam in a cantilever configuration, are evaluated in impulse tests. A numerical model is also presented, to calculate the aforementioned dynamic properties numerically, using Modal Strain Energy (MSE) and Modal Dynamics procedures by considering the derived interfacial parameters. Keywords: Hybrid composite, Delamination, FE analysis, Cohesive interface, Damage initiation, Modal dynamic
    • …
    corecore